Claim your £9,000 voucher to study for a UK master's degree

Kinetic Energy Recovery System (Kers)

Type Seminars
Faculty Engineering, Environment & Technology
Course Mechanical and Production Engineering
Price ₦1,500
Key Features:
No of Pages: 12
Images
Well detailed
Abstract:
KERS means Kinetic Energy Recovery System and it refers to the mechanisms that recover the energy that would normally be lost when reducing speed. The energy is stored in a mechanical form and retransmitted to the wheel in order to help the acceleration. Electric vehicles and hybrid have a similar system called Regenerative Brake which restores the energy in the batteries. The device recovers the kinetic energy that is present in the waste heat created by the car’s braking process. It stores that energy and converts it into power that can be called upon to boost acceleration.

There are principally two types of system - battery (electrical) and flywheel (mechanical). Electrical systems use a motor-generator incorporated in the car’s transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released when required.

Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car’s rear wheels. In contrast to an electrical KERS, the mechanical energy doesn’t change state and is, therefore, more efficient.

There is one other option available - hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.
Table of Content:
- CONSTRUCTION DETAILS
- KERS IN FORMULA 1
- KERS & REGENERATIVE BRAKING
Introduction:
The first, mechanical, consisted of using a carbon flywheel in a vacuum linked via a CVT transmission to the differential. This system stores the mechanical energy, offers a big storage capacity and has the advantage of being independent from the gearbox. However, to be driven precisely, it requires some powerful and bulky actuators, and lots of space.

Compared to the alternative of electrical-battery systems, the mechanical KERS system provides a significantly more compact, efficient, lighter and environmentally-friendly solution.
The components within each variator include an input disc and an opposing output disc. Each disc is formed so that the gap created between the discs is ‘doughnut’ shaped; that is, the toroidal surfaces on each disc form the toroidalcavity. Two or three rollers are located inside each toroidal cavity and are positioned so that the outer edge of each roller is in contact with the toroidal surfaces of the input disc and output disc. As the input disc rotates, power is transferred via the rollers to the output disc, which rotates in the opposite direction to the input disc.

The angle of the roller determines the ratio of the Variator and therefore a change in the angle of the roller results in a change in the ratio. So, with the roller at a small radius (near the centre) on the input disc and at a large radius (near the edge) on the output disc the Variator produces a ‘low’ ratio. Moving the roller across the discs to a large radius at the input disc and corresponding low radius at the output produces the ‘high’ ratio and provides the full ratio sweep in a smooth, continuous manner.
Buy Now