JAMB CBT Mobile App 2025 - Free Download
JAMB CBT 2025 - Candidates, Schools, Centres, Resellers - Get Ready!

Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\).

Further Mathematics
WAEC 2016

Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\).

  • A. \(\frac{135}{729}\)
  • B. \(\frac{149}{729}\)
  • C. \(\frac{152}{729}\)
  • D. \(\frac{160}{729}\)
JAMB CBT Mobile App 2025 - Free Download
JAMB CBT 2025 - Candidates, Schools, Centres, Resellers - Get Ready!
JAMB CBT Software 2025 - Free Download
WAEC Past Questions, Objective & Theory, Study 100% offline, Download app now - 127076
Correct Answer: Option D
Explanation

\([\frac{1}{3}(2 + x)]^{6} = (\frac{2}{3} + \frac{x}{3})^{6}\)

The coefficient of \(x^{3}\) is 

\(^{6}C_{3}(\frac{2}{3})^{3}(\frac{1}{3})^{3}x^{3} = (\frac{6!}{3!3!})(\frac{8}{27})(\frac{1}{27})x^{3}\)

= \(\frac{160}{729}\)


Report an Error Ask A Question Download App
JAMB CBT Mobile App 2025 - Free Download
JAMB CBT Software 2025 - Free Download
JAMB CBT 2025 - Candidates, Schools, Centres, Resellers - Get Ready!
WAEC Past Questions, Objective & Theory, Study 100% offline, Download app now - 127076

Contributions ({{ comment_count }})

Please wait...

{{ settings.no_comment_msg ? settings.no_comment_msg : 'There are no comments' }}

Quick Questions

Post your Contribution

Please don't post or ask to join a "Group" or "Whatsapp Group" as a comment. It will be deleted. To join or start a group, please click here

{{ quote.posted_by.display_name }}
{{ settings.form_textarea_description }}
 
JAMB CBT Mobile App 2025 - Free Download
JAMB CBT 2025 - Candidates, Schools, Centres, Resellers - Get Ready!
JAMB CBT Software 2025 - Free Download
WAEC Past Questions, Objective & Theory, Study 100% offline, Download app now - 127076
JAMB CBT Mobile App 2025 - Free Download
JAMB CBT Software 2025 - Free Download
WAEC Past Questions, Objective & Theory, Study 100% offline, Download app now - 127076
JAMB CBT 2025 - Candidates, Schools, Centres, Resellers - Get Ready!