what is the difference between paramagnetism and ferromagnetism?

what is the difference between paramagnetism and ferromagnetism?

To get notifications when anyone posts a new answer to this question,
Follow New Answers

Post an Answer

Please don't post or ask to join a "Group" or "Whatsapp Group" as a comment. It will be deleted. To join or start a group, please click here

Answers (5)

Tyrone Darren
1 month ago
paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field and form internal,induced magnetic field in the direction of the alplied magnetic field .
ferromagnetism is the basic mechanism by which certain materials (such as iron) form permanent magnets or are attracted to magnet's.
1 month ago
Open main menu
Download PDF

When liquid oxygen is poured from a beaker into a strong magnet, the oxygen is temporarily contained between the magnetic poles owing to its paramagnetism.
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the direction opposite to that of the applied magnetic field.[1] Paramagnetic materials include most chemical elements and some compounds;[2] they have a relative magnetic permeability slightly greater than 1 (i.e., a small positive magnetic susceptibility) and hence are attracted to magnetic fields. The magnetic moment induced by the applied field is linear in the field strength and rather weak. It typically requires a sensitive analytical balance to detect the effect and modern measurements on paramagnetic materials are often conducted with a SQUID magnetometer.

Paramagnetism is due to the presence of unpaired electrons in the material, so most atoms with incompletely filled atomic orbitals are paramagnetic, although exceptions such as copper exist. Due to their spin, unpaired electrons have a magnetic dipole moment and act like tiny magnets. An external magnetic field causes the electrons' spins to align parallel to the field, causing a net attraction. Paramagnetic materials include aluminium, oxygen, titanium, and iron oxide (FeO). Therefore, a simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic[3]: If all electrons in the particle are paired, then the substance made of this particle is diamagnetic; If it has unpaired electrons, then the substance is paramagnetic.

Unlike ferromagnets, paramagnets do not retain any magnetization in the absence of an externally applied magnetic field because thermal motion randomizes the spin orientations. (Some paramagnetic materials retain spin disorder even at absolute zero, meaning they are paramagnetic in the ground state, i.e. in the absence of thermal motion.) Thus the total magnetization drops to zero when the applied field is removed. Even in the presence of the field there is only a small induced magnetization because only a small fraction of the spins will be oriented by the field. This fraction is proportional to the field strength and this explains the linear dependency. The attraction experienced by ferromagnetic materials is non-linear and much stronger, so that it is easily observed, for instance, in the attraction between a refrigerator magnet and the iron of the refrigerator itself.

Relation to electron spins
Examples of paramagnets
See also
Further reading
External links
Last edited 30 days ago by S0091
Class of physical phenomena

Curie–Weiss law
curie law:-magnetization of paramagnetic sample is directly proportional to external magnetic field and inversely proportional to Absolute Temperature

Study of magnetic properties of chemical compounds

Content is available under CC BY-SA 3.0 unless otherwise noted.
Terms of UsePrivacyDesktop
Paramagnetism refers to materials like aluminum or platinum which become
magnetized in a magnetic field but their
magnetism disappears when the field is
removed. Ferromagnetism refers to materials (such as iron and nickel) that can retain their
magnetic properties when the magnetic field
is removed.
Ask Your Own Question

Quick Questions

See More Physics Questions