Find the values of x where the curve y = x\(^3\) + 2x\(^2\) - 5x - 6 crosses the x - axis.
To find the values of \( x \) where the curve
\(y = x^3 + 2x^2 - 5x - 6\)
crosses the x-axis, we set \( y = 0 \):
\(x^3 + 2x^2 - 5x - 6 = 0\)
Testing for rational roots, we find that \( x = -1 \) is a root. Factoring the polynomial gives:
\(x^3 + 2x^2 - 5x - 6 = (x + 1)(x^2 + x - 6)\)
Solving the quadratic \( x^2 + x - 6 = 0 \) using the quadratic formula yields:
\(x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot -6}}{2 \cdot 1} = \frac{-1 \pm 5}{2}\)
Thus, the solutions are:
\(x = -1, \quad x = 2, \quad x = -3\)
Therefore, the values of \( x \) where the curve crosses the x-axis are \(x = -1, \quad x = 2, \quad x = -3\).
Contributions ({{ comment_count }})
Please wait...
Modal title
Report
Block User
{{ feedback_modal_data.title }}