To find the inverse of the matrix
\(A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}\)
We can use the formula for the inverse of a \( 2 \times 2 \) matrix:
\(A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}\)
where \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).
Identify \( a, b, c, d \)}
In our matrix, we have:
\(a = 2, \quad b = 1, \quad c = 1, \quad d = 1\)
Calculate the determinant \( ad - bc \)
Calculating the determinant:
\(ad - bc = (2)(1) - (1)(1) = 2 - 1 = 1\)
Calculate the inverse:
Now substituting into the formula for the inverse:
\(A^{-1} = \frac{1}{1} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)
Thus, the inverse of the matrix \( \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \) is \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)
Contributions ({{ comment_count }})
Please wait...
Modal title
Report
Block User
{{ feedback_modal_data.title }}