If f(x) = 3x - 2I, P = \(\begin{pmatrix}2 & 1 \\-1 & 0 \end{pmatrix}\) and I is 2 x 2 identity matrix. Evaluate f(p)
I = \(\begin{pmatrix}1 & 0 \\0 & 1 \end{pmatrix}\)
Then, 3x - 2I becomes 3p - 2I (since we are finding f(p))
3\(\begin{pmatrix}2 & 1 \\-1 & 0 \end{pmatrix}\) - 2\(\begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}\)
= \(\begin{pmatrix}6 & 3 \\-3 & 0 \end{pmatrix}\) - \(\begin{pmatrix}2 & 0 \\ 0 & 2 \end{pmatrix}\)
= \(\begin{pmatrix}4 & 3 \\-3 & -2 \end{pmatrix}\)
There is an explanation video available below.
Contributions ({{ comment_count }})
Please wait...
Modal title
Report
Block User
{{ feedback_modal_data.title }}