To find \( h \) for the function
\(y = 1 + hx - 3x^2\)
with a minimum value of 13:
1. The vertex \( x \) is given by
\(x = \frac{h}{6}\)
2. Substitute into the function:
\(y = 1 + \frac{h^2}{6} - 3\left(\frac{h}{6}\right)^2 = 1 + \frac{h^2}{6} - \frac{h^2}{12}\)
3. Combine terms:
\(y = 1 + \frac{2h^2}{12} - \frac{h^2}{12} = 1 + \frac{h^2}{12}\)
4. Set equal to 13:
\(1 + \frac{h^2}{12} = 13 \implies \frac{h^2}{12} = 12 \implies h^2 = 144 \implies h = 12 \text{ or } -12\)
\( h = 12 \) or \( h = -12 \).
Contributions ({{ comment_count }})
Please wait...
Modal title
Report
Block User
{{ feedback_modal_data.title }}