The compressibility factor 'Z' is an index of deviation of real gases from ideality. When...

The compressibility factor 'Z' is an index of deviation of real gases from ideality. When Z=1, what does it indicate?

To get notifications when anyone posts a new answer to this question,
Follow New Answers

Post an Answer

Please don't post or ask to join a "Group" or "Whatsapp Group" as a comment. It will be deleted. To join or start a group, please click here

The postulates of the kinetic molecular theory of gases ignore both the volume occupied by the molecules of a gas and all interactions between molecules, whether attractive or repulsive. In reality, however, all gases have nonzero molecular volumes. Furthermore, the molecules of real gases interact with one another in ways that depend on the structure of the molecules and therefore differ for each gaseous substance. In this section, we consider the properties of real gases and how and why they differ from the predictions of the perfect (ideal) gas law. We also examine liquefaction, a key property of real gases that is not predicted by the kinetic molecular theory of gases.
HENRYVILLA

Answers (2)

mhizzlee
7 months ago
The compressibility factor (Z) is a useful thermodynamic property for modifying the ideal gas law to account for behavior of real gases.[1][2][3][4][5] It is a measure of how much the thermodynamic properties of a real gas deviate from those expected of an ideal gas. It may be thought of as the ratio of the actual volume of a real gas to the volume predicted by the ideal gas at the same temperature and pressure as the actual volume.

For an ideal gas, Z always has a value of 1. For real gases, the value may deviate positively or negatively, depending on the effect of the intermolecular forces of the gas. The closer a real gas is to its critical point or to its saturation point, the larger are the deviations of the gas from ideal behavior.

The upper graph in Figure 1 illustrates how the compressibility factor varies for different gases at the same temperature and pressure. The lower graph illustrates how the compressibility factor of a gas (for example, methane) at a given pressure varies with temperature
HENRYVILLA
7 months ago
The postulates of the kinetic molecular theory of gases ignore both the volume occupied by the molecules of a gas and all interactions between molecules, whether attractive or repulsive. In reality, however, all gases have nonzero molecular volumes. Furthermore, the molecules of real gases interact with one another in ways that depend on the structure of the molecules and therefore differ for each gaseous substance. In this section, we consider the properties of real gases and how and why they differ from the predictions of the perfect (ideal) gas law. We also examine liquefaction, a key property of real gases that is not predicted by the kinetic molecular theory of gases.
Ask Your Own Question

Quick Questions

See More Kano University Of Science And Technology Questions